Muhammad I. Rosadi
Agus Z. Arifin
Anny Yuniarti



Kanker payudara adalah penyakit yang paling umum diderita oleh perempuan pada banyak negara. Pemeriksaan kanker payudara dapat dilakukan menggunakan citra Mammogram dengan teknologi sistem Computer-Aided Detection (CAD). Analisis CAD yang telah dikembangkan adalah ekstraksi fitur GLCM, reduksi/seleksi fitur, dan SVM. Pada SVM (Support Vector Machine) maupun LS-SVM (Least Square Support Vector Machine) terdapat tiga masalah yang muncul, yaitu: Bagaimana memilih fungsi kernel, berapa jumlah fitur input yang dioptimalkan, dan bagaimana menentukan parameter kernel terbaik. Jumlah fitur dan nilai parameter kernel yang diperlukan saling mempengaruhi, sehingga seleksi fitur diperlukan dalam membangun sistem klasifikasi. Pada penelitian ini bertujuan untuk mengklasifikasi massa pada citra Mammogram berdasarkan dua kelas yaitu kelas kanker jinak dan kelas kanker ganas. Ekstraksi fitur menggunakan Gray Level Co-occurrence Matrix (GLCM). Hasil proses ekstraksi fitur tersebut kemudian diseleksi mengunakan metode F-Score. F-Score diperoleh dengan menghitung nilai diskriminan data hasil ekstraksi fitur di antara data dua kelas pada data training. Nilai F-Score masing-masing fitur kemudian diurutkan secara descending. Hasil pengurutan tersebut digunakan untuk membuat kombinasi fitur. Kombinasi fitur tersebut digunakan sebagai input LS-SVM. Dari hasil uji coba penelitian ini didapatkan, bahwa menggunakan kombinasi seleksi fitur sangat berpengaruh terhadap tingkat akurasi. Akurasi terbaik didapat dengan menggunakan LS-SVM RBF dan SVM RBF baik dengan kombinasi seleksi fitur, maupun tanpa kombinasi seleksi fitur dengan nilai akurasi yaitu 97,5%. Selain itu juga seleksi fitur mampu mengurangi waktu komputasi.

Kata Kunci: F-Score, GLCM, kanker payudara, LS-SVM.

Breast cancer is the most common disease suffered by women in many countries. Breast cancer screening can be done using a mammogram image. Computer-aided detection system (CAD). CAD analysis that has been developed is GLCM efficient feature extraction, reduction / feature selection and SVM. In SVM (Support Vector Machine) and LS-SVM (Support Vector Machine Square least) there are three problems that arise, namely; how to choose the kernel function, how many input fea-tures are optimal, and how to determine the best kernel parameters. The number of fea-tures and value required kernel parameters affect each other, so that the selection of the features needed to build a system of classification. In this study aims to classify image of masses on digital mammography based on two classes benign cancer and malignant cancer. Feature extraction using gray level co-occurrence matrix (GLCM). The results of the feature extraction process then selected using the method F-Score. F-Score is obtained by calculating the value of the discriminant feature extraction results data between two classes of data in the data training. Value F-Score of each feature and then sorted in descending order. The sequenc-ing results are used to make the combination of fea-tures. The combination of these features are used as input LS-SVM. From the experiments that use a combination of feature selection affects the accuracy ting-kat. Best accuracy obtained using LS-SVM and SVM RBF RBF with combi-nation or without the combination of feature selection with accuracy value is 97.5%. It also features a selection able to curate the computa-tion time.
Keywords: Breast Cancer, F-Score, GLCM, LS-SVM.

Full Text:



Eurostat, "Healt statistic: atlas on mortaly in the European Union," Eurostat, Luxembourg, 2002.

H. C. Zuckerman, The role of mammography in the diagnosis of breast cancer. Breast cancer, diagnosis and treatment, New York: McGraw-Hill, 1987.

E. D. PISANO and F. SHTERN, "Image Processing And Computer Aided Diagnosis In Digital Mammography: A Clinical Perspective," International Journal of Pattern Recognition and Artificial Intelligence, vol. 7, no. 6, pp. 1493-1503, 1993.

S. Tai, Z. Chen and W. Tsai, "An Automatic Mass Detection System in Mammograms based on Complex Texture Features," IEEE Journal of Biomedical and Health Informatics, vol. 18, no. 2, pp. 618-627, 2014.

H. D. Cheng, X. J. Shi, R. Min, L. M. Hu, X. P. Cai and H. N. Du, "Approaches for automated detection and classification of masses in mammograms," Journal Pattern Recognition, vol. 39, no. 4, pp. 646-668, 2006.

F. Albregtsen, "Statistical Texture Measures Computed from Gray Level Coocurrence Matrices," University of Oslo, Oslo, 2008.

L. Yu and H. Liu, "Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution," in Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

Y.-W. Chen and C.-J. Lin, "Combining SVMs with Various Feature Selection Strategies," in Feature Extraction, vol. 207, Berlin Heidelberg, Springer, 2006, pp. 315-324.

M. F. Akay, "Support vector machines combined with feature selection for breast cancer diagnosis," Expert Systems with Applications , vol. 36, no. 2009, p. 3240–3247, 2009.

R. Aarthi, K. Divya, N. Komala and S. Kavitha, "Application of Feature Extraction and clustering in mammogram classification using Support Vector Machine," in Third International Conference on Advanced Computing, Chennai, 2011.

J. A. K. Suykens and J. Vandewalle, "Least Squares Support Vector Machine Classifiers," Neural Processing Letters , vol. 9, no. 3, pp. 293-300, 1999.

S. Timp and N. Karssemeijer, "Interval change analysis to improve computer aided detection in mammography," Medical Image Analysis , vol. 10, no. 1, p. 82–95, 2006.

E. B. Holmes, G. L. White and D. K. Gaffney, "Ionizing Radiation Exposure, Medical Imaging," Medscape, 2010.

V. Vapnik, The nature of statistical learning theory, New York: Springer Science & Business Media, 2013.

L. Hakim, S. Mutrofin dan E. K. Ratnasari, “Segmentasi Citra menggunakan Support Vector Machine (SVM)dan Ellipsoid Region Search Strategy (ERSS) Arimoto Entropy berdasarkan Ciri Warna dan Tekstur,” Register: Jurnal Ilmiah Teknologi Sistem Informasi, vol. 2, no. 1, pp. 11-16, 2016.

K. Pelckmans, J. A. K. Suykens, T. V. Gestel, J. D. Brabanter, L. Lukas, B. Hamers, B. D. Moor and J.Vandewalle, "LS-SVMlab: a MATLAB/C toolbox for Least Squares Support Vector Machines," Leuven, Belgium, 2002.

K. Pelckmans, J. Suykens, T. Van Gestel, J. De Brabanter, L. Lukas, B. Hamers, B. De Moor and J. Vandewalle, "LS-SVMlab toolbox user’s guide," Pattern recognition letters, vol. 24, no. 2003, pp. 659-675, 2003.


Index by:

Powered by:

Plagiarism checker:


ISSN (Print): 2087-8893 and ISSN (Online): 2527-3671


Free counters!


 TEKNOLOGI on Facebook: