
7 (1) January 2021 31-42 ISSN 2502-3357 (online) | ISSN 2503-0477 (print)

Register: Jurnal Ilmiah Teknologi Sistem Informasi

Movie recommender systems using hybrid model based on graphs with co-rated … http://doi.org/10.26594/register.v7i1.2081

Contents lists available at www.journal.unipdu.ac.id

Journal Page is available to www.journal.unipdu.ac.id/index.php/register

Research article

Movie recommender systems using hybrid model based on

graphs with co-rated, genre, and closed caption features

Putra Pandu Adikara a, Yuita Arum Sari b, Sigit Adinugroho c, Budi Darma Setiawan d

a,b,c Department of Information Engineering, Universitas Brawijaya, Malang, Indonesia
d Graduate School of Information Science and Engineering, Ritsumeikan University, Japan

email: a adikara.putra@ub.ac.id, b yuita@ub.ac.id, c sigit.adinu@ub.ac.id, d gr0450hp@ed.ritsumei.ac.jp

A R T I C L E I N F O A B S T R A C T

Article history:

Received 07 August 2020

Revised 01 September 2020

Accepted 08 September 2020

Available online 30 January 2021

A movie recommendation is a long-standing challenge. Figuring

out the viewer’s interest in movies is still a problem since a huge

number of movies are released in no time. In the meantime, people

cannot enjoy all available new releases or unseen movies due to

their limited time. They also still need to choose which movies to

watch when they have spare time. This situation is not good for the

movie business too. In order to satisfy people in choosing what

movies to watch and to boost movie sales, a system that can

recommend suitable movies is required, either unseen in the past

or new releases. This paper focuses on the hybrid approach, a

combination of content-based and collaborative filtering, using a

graph-based model. This hybrid approach is proposed to overcome

the drawbacks of combination in the content-based and

collaborative filtering. The graph database, Neo4j is used to store

the collaborative features, such as movies with its genres, and

ratings. Since the movie’s closed caption is rarely considered to be

used in a recommendation, the proposed method evaluates the

impact of using this syntactic feature. From the early test, the

combination of collaborative filtering and content-based using

closed caption gives a slightly better result than without closed

caption, especially in finding similar movies such as sequel or

prequel.

Keywords:

closed caption

hybrid recommender system

movies

neo4j graph database

Please cite this article in IEEE style as:

P. P. Adikara, Y. A. Sari, S. Adinugroho and

B. D. Setiawan, "Movie recommender

systems using hybrid model based on graphs

with co-rated, genre, and closed caption

features," Register: Jurnal Ilmiah Teknologi

Sistem Informasi, vol. 7, no. 1, pp. 31-42, 2021.

Register with CC BY NC SA license. Copyright © 2021, the author(s)

1. Introduction

The necessities of human are never adequate in fulfilling their self-satisfaction, likewise entertainment

that is always needed in daily life. One of the interesting entertainments is watching movies. Movies

generally attract people anywhere in the world, regardless the genres and the movie enthusiasts’ age.

This is the reason why the movie business is really profitable. By the time goes, many films or movies

are released at the same time in cinemas in order to satisfy their viewers while gaining profit. However,

some people are unable to watch all the released movies due to personal reasons, such as time or

financial limitations. Thus, some of them prefer to watch movies later, and eventually, they may forget

what to watch. To recall what they want to watch usually they will browse the Internet, for instance,

online stores where people can rent or buy movies. It is now easy to find online video-on-demand

services, not only available on the web but also smartphone by using particular video streaming apps.

The latest smart televisions and set-top boxes also provide video streaming apps. One of the common

features provided by these video-on-demand services is movie recommendations. The reason why a

movie recommendation is important because they want to display not only the latest but also older

http://doi.org/10.26594/register.v7i1.2081
http://www.journal.unipdu.ac.id/
http://www.journal.unipdu.ac.id/index.php/register
mailto:adikara.putra@ub.ac.id
mailto:yuita@ub.ac.id
mailto:sigit.adinu@ub.ac.id
mailto:gr0450hp@ed.ritsumei.ac.jp

32
P. P. Adikara et al. ISSN 2502-3357 (online) | ISSN 2503-0477 (print)

regist. j. ilm. teknol. sist. inf. 7 (1) January 2021 31-42

Movie recommender systems using hybrid model based on graphs with co-rated … http://doi.org/10.26594/register.v7i1.2081

movies, so people will get attracted and satisfied while the business is able to keep selling movies in a

long-running after the show time in cinemas is ended. Based on that reason, this paper proposes a new

framework to make a recommender system according to the user’s preferences.

In general, there are several approaches in building a recommender system, content-based

filtering (CB), collaborative filtering (CF), knowledge-based (KB), or combinations of the two (hybrid

model). CB recommendation is based on previous preference similarity which depends on feature and

textual description of items. On the other hand, the CF approach is relying on certain information given

by users who have similar favor and rating is one of the parameters. Meanwhile, the KB provides

recommendation based on knowledge resources which are not exploited in both approaches, for

instance, constraint-based or case-based recommendation [1].

Each method has its own disadvantages. Content-based filtering has several limitations such as

limited content analysis, overspecialization, and new users [2]. Since this approach is not involving the

user’s preference, item’s features are extracted using information retrieval methods, and it is not enough

to provide information to distinguish which one the user likes or dislikes. Overspecialization is

happened due to only items with high similarity to those items that are already rated that likely to be

recommended to users. For example, a user that never read a romantic novel will likely never be

recommended to the best romantic novel. Another issue is users have to assign a rating to several items

so that the system can learn user preferences and give an accurate prediction. If the available ratings are

limited in a small number, the recommender system cannot give accurate suggestions for new users [2],

for instance, the movie recommendation using content-based filtering and genomic tags [3].

Collaborative Filtering also has weak points in dealing with new users, new items, and sparsity

issues [4]. CF estimates the recommendation of items that are assigned by other users. However, the

same as CB, this approach has a problem when encountering new users, known as cold start [2].

Moreover, new items need to be rated by many users, since it is required for building a precise

recommender system. CF recommender system is relying on a large number of available information.

Based on the previous experiments, the number of retrieved ratings is lower than the number of ratings

that need to be predicted. For example, if a movie is rated only by small number of people, this movie

will not be recommended even it has high rating. This is known as sparsity, in which user-item matrix

become sparse. Sparse user-item matrix can diminish the performance of recommender systems [5].

Contextual factor also plays an important role as well to produce good recommender systems, for

instance, location, time, and the purpose of purchase. Nevertheless, early recommendation, the use of

contextual factors is burdensome since it needs massive training data and huge effort to make one. In

addition, the contextual part is arbitrarily changed over time. One of the researches in movie

recommendation using CF and user‘s behavioral historical data on large data sets [6].

Since those two problems exist in CB and CF approach, thus a hybrid method is proposed to

overcome the drawbacks of each method [7]. The combination of CB and CF can be done, to construct

user profile information, item features from the textual description, and from the community such as

rating. One way to apply this recommender system was applied in a digital library by Huang et.al using

a combination of hybrid and graph-based [8]. The graph-based model yields a better result over the

matrix factorization model. For example, music recommendation using Last.fm data and achieve novel

recommendation and keep the results relevant [9]. Another hybrid method is proposed [10] for movie

recommendation using tags and ratings. The study used social features constructed from personal

preference based on content annotation. They employed a singular value decomposition algorithm to

build a personalized scoring system.

In this paper, an initial framework of a hybrid model for recommendation using graph is

proposed. The graph-based model is applied regarding its advantages comparing to CB and CF.

Previous research for movie recommendation already used a graph model [11], however their result

still needs a deeper investigation. Another graph model using latent graph features has been deployed

for movie recommendation system [12]. They used user-id, item-id, and rating for the features, but did

not considering the closed caption to be used. Other researches are using visual features [13], affective

features [14], genre correlation [15], sentiment analysis [16], and story-based features extracted from

movie characters and their interactions [17], user interest and movie feature [18], however none of them

investigated closed caption. In this study, a graph model for movie recommendation system using a

http://doi.org/10.26594/register.v7i1.2081

33
P. P. Adikara et al. ISSN 2502-3357 (online) | ISSN 2503-0477 (print)

regist. j. ilm. teknol. sist. inf. 7 (1) January 2021 31-42

Movie recommender systems using hybrid model based on graphs with co-rated … http://doi.org/10.26594/register.v7i1.2081

graph database, Neo4j. The features used are the combination of collaborative and content-based, in the

form of textual descriptions and ratings. In this case, one of the textual descriptions of a movie is the

closed caption. Closed caption describes what the content of the movie is, such as names, places, talks.

Closed caption is added as feature of CB to find out similar movies based on the conversations and the

story. Therefore, in this study, rating, genres, and closed caption are considered. Moreover, this study

are focusing on syntactic rather than semantic.

2. Proposed Method

In this paper, a hybrid recommendation system is built by means of graph-based model which is

involving closed caption/subtitle as one of the features in CB filtering. Closed caption is a conversation

part that explains the content of a movie and by using some of which can be employed hypothetically

for searching out similar movies, either pre-sequel or sequel of a movie. The hybrid method is applied

by using a graph-based model with a combination of CF and CB filtering. Fig. 1 depicts the overall steps

in building the graph database. Later, this graph database will be used to construct the query for making

movie recommendations.

Fig. 1. Building a graph-based database

2.1. Dataset acquisition

The first dataset used in this paper is movies and ratings, 20M MovieLens that are available at

MovieLens. This MovieLens dataset consists of 27.279 movies and 20 million ratings given by users.

Most types of these movies are western movies (not tv series or drama) within 1891-2015. For this study

purpose, two CSV files from MovieLens are used:

a. Movies.csv, contains movies data, with three columns:

1. movieId: a unique identifier of each movie.

2. title: the title of the movie.

3. genres: the genres of the movie with delimiter “|” (pipeline symbol).

Example as follows:
1
2
3
4
5
6

movieId,title,genres
1,Toy Story (1995),Adventure|Animation|Children|Comedy|Fantasy
2,Jumanji (1995),Adventure|Children|Fantasy
3,Grumpier Old Men (1995),Comedy|Romance
4,Waiting to Exhale (1995),Comedy|Drama|Romance
5,Father of the Bride Part II (1995),Comedy

b. Ratings.csv, contains user and rating data given to movies, with 5 columns:

1. userId: an identifier of the user (anonymous).

2. movieId: the identifier of the movie in which this user had given a rating.

3. rating: the given rating, within range of 1-5

4. timestamp: the timestamp when the user gave the rating with POSIX/UNIX time format.

Example as follows.
1
2
3
4
5
6

userId,movieId,rating,timestamp
1,2,3.5,1112486027
1,29,3.5,1112484676
1,32,3.5,1112484819
1,47,3.5,1112484727
1,50,3.5,1112484580

The second dataset used in this research is subtitle/closed caption from the movies. the closed

captions are collected automatically by crawling from Subscene (subscene.com). It is challenging to

Download MovieLens data dan crawling its movies’ closed caption

Pre-processing the data (case folding, filtering, stemming)

Design and construct graph database

http://doi.org/10.26594/register.v7i1.2081

34
P. P. Adikara et al. ISSN 2502-3357 (online) | ISSN 2503-0477 (print)

regist. j. ilm. teknol. sist. inf. 7 (1) January 2021 31-42

Movie recommender systems using hybrid model based on graphs with co-rated … http://doi.org/10.26594/register.v7i1.2081

crawl from Subscene since they do not provide any API, thus and the download process used the movie

title as the query. Pseudocode of the crawler described in Algorithm 1.
Algorithm 1 Pseudo-code of Subtitle crawler

1

2

3

4

5

6

7

8

9

10

movies = read file Movies.csv from MovieLens

for m in movies do

Search movie by title m and year then filter by language=English and section type in this priority:

1. Exact: query and title are exact match

2. Close: movie title is similar to query

3. Popular: movie title is popular and similar to query

if subtitle is in one of section type then

similarity = calculate title similarity and query using Jaro-Winkler

if similarity > 0.8 then

Download the subtitle and save to a folder named movie ID m

Append to log that it’s found

else

Append to log that it’s not found

Finding an appropriate subtitle in Subscene sometimes give unexpected result, it happens due to

similarity between returned movie title and query (and also with different movie year) but actually

unrelated, which can be a false positive. There is also a possibility that the movie title is located not in

the first position, even if the query and the title is an exact match. In this case, to reduce the false positive

to get the correct subtitle, a similarity measure between query q and movie title τ in result set from

Subscene is calculated using Jaro-Winkler similarity [19], in which improved from Jaro similarity (Eq.

1):

𝒔𝒊𝒎𝒘(𝒒, 𝒕) = {
𝟎 if 𝒎 = 𝟎
𝟏

𝟑
(

𝒎

|𝒒|
) + (

𝒎

|𝝉|
) +

𝒎−𝒕

𝒎
otherwise (1)

where: 𝑞 = query, 𝑡 = movie title from Subscene result set, |𝑞| = length of the string from the query, |𝑡| =

length of the string from the movie title, 𝑚 = the number of matching characters, 𝑡 = half the number of

transpositions. Two characters from q and t, are considered matching only if they are the same and not

farther than ⌊
max(|𝑞|,|𝜏|)

2
⌋ − 1.

Jaro-Winkler similarity formulated in Eq. 2.

𝒔𝒊𝒎(𝒒, 𝝉) = 𝒔𝒊𝒎𝒘(𝒒, 𝝉) + 𝓵𝒑(𝟏 − 𝒔𝒊𝒎𝒘(𝒒, 𝝉)) (2)

where sim(q,t) = Jaro similarity for q and t, 𝓵 = length of common prefix at the start of the string up to

a maximum of four characters, p = constant scaling factor, the standard value is 0.1. In this case, a query

and the movie title are considered correct if the similarity larger than the threshold of 0.8, permitting

subtle differences, like diacritics, accent, or any translated language other than English.

From the crawled result, more than half of the movies failed to find its closed caption. Only

approximately 13.144 closed caption that can be obtained from 27.279 movies (48%). One of the reasons

is the possibility of many movies before 1990 (and also later) that do not have/include English subtitles

or people who are interested to transcribe an English subtitle of the movie. From the statistic, there are

more than 10.000 movies between 1891 to 1990 (~37%), more than 4.000 movies between 1990 to 2000

(~16%), and more than 12.000 between 2000-2015 (~44%). This statistic allows us to prove our initial

hypothesis of missing closed caption. Later in building the graph database, only movies with English

closed caption that are included in this research.

2.2. Dataset pre-processing

Specific text pre-processing is not applied on MovieLens dataset since its already well structured. Only

movies that don’t have closed caption are filtered out. The main text pre-processing step is applied to

the collected closed caption dataset.

After the closed caption’s time section is omitted, leaving only the text contains the conversation,

pre-processing steps then applied on the resulted text:

• Remove formatting and hearing-impaired tags (opening and closing tag), such as <tag>, [tag], {tag},

and (tag).

http://doi.org/10.26594/register.v7i1.2081

35
P. P. Adikara et al. ISSN 2502-3357 (online) | ISSN 2503-0477 (print)

regist. j. ilm. teknol. sist. inf. 7 (1) January 2021 31-42

Movie recommender systems using hybrid model based on graphs with co-rated … http://doi.org/10.26594/register.v7i1.2081

• Remove the ads in the text, since some fansubber (people who transcribe the subtitle) also place ads

to get commissions.

• Remove the numeric and non-word characters/ Unicode symbols.

The cleaned closed captions then saved in another file, in this case, a JSON file along with the movie ID

of each closed caption belongs to. The resulted JSON file is approximately 500 MB in size.

2.3. Constructing closed caption corpus

The JSON file contains the movie ID and its closed caption then underwent another pre-processing stage.

This pre-processing is important in preparing the corpus for Term Frequency-Inverse Document

Frequency (TF-IDF) calculation. The pre-processing steps are case folding and lemmatization. Case

folding is a process of converting all capital letters to lower case [20]. Stemming is not used, because

stemmer tends to cut off the end of a word to reduce the inflection and resulting in an over-

stemmed/under-stemmed word [20]. Hence, lemmatization is used to reduce the inflections but keep

the word in original lemma to maintain its semantic later when in use as necessary. This step is

important to use in order to reduce the number of terms or words that have similar meanings, even

though there are some morphology differences. WordNet lemmatizer is used as part of Natural

Language Toolkit (NLTK) Python module.

Once pre-processed is done, the term’s weight in every document is calculated using TF-IDF.

Later, the TF-IDF weight vector will be used to compute the similarity between two movies, the query

and a candidate movie. Term weighting TF-IDF is usually used in information retrieval or text mining,

specifically vector space model, in order to evaluate which terms have significance/importance in a

document over the collection of documents (corpus). This importance is proportionally increasing as

the number of times of a word t occurs in the document d (tft,d) as shown in Eq. 3. However, since more

frequent a word is not always more important, considering the stop words, another measure is taken

into account. Hence, tft,d then multiplied by idft, a measure of how important a word t over all documents

in the corpus (Eq. 4).

𝒕𝒇𝒕,𝒅 = {
1 + log10 tf𝒕,𝒅, if tf𝒕,𝒅 > 0

0, otherwise
 (3)

where tf = number of occurrence (frequency) of term t in document d.

idf𝒕 = log10
𝑵

df𝒕
 (4)

where N = total number of documents in the corpus, dft = number of documents contain term t. Thus,

the weight of term t denoted as wt,d is shown in Eq. 5.

𝒘𝒕,𝒅 = tf𝒕,𝒅 × 𝒊𝒅𝒇𝒕 (5)

Once pre-processed, TF-IDF calculation is done by utilizing Python module, TFIDFTransformer, and

TFIDFVectorizer from Scikit Learn module. The resulted TF-IDF matrix then saved to another file using

Pickle.

2.4. Constructing the graph-based database

After the pre-processing stage, the graph used for storing data is created. It contains vertices (nodes)

and edges linked between vertices. The types of vertex are:

• Movie. This vertex is composed of metadata of the movie, they are ID Movie, Title, Year, IMDB

URL according to MovieLens data.

• User. This vertex is composed of metadata of the user, they are ID User, Age, Gender, and

Occupation as maintained by MovieLens.

• Genre. This vertex is composed of properties of the genre. Each genre contains a single vertex so

that 19 genres in MovieLens are generated into 19 genre vertices.

The edge of vertices can be described as follows:

• Movie Genre. The edge connects Movie vertex to Genre vertex if the Movie has Genre (the Movie has

hasGenre relationship)

• Movie-User. The edge connects Movie vertex to User vertex if a Movie is rated by User. The rating is

in a form of stars, with a possible value of 0-5.

http://doi.org/10.26594/register.v7i1.2081

36
P. P. Adikara et al. ISSN 2502-3357 (online) | ISSN 2503-0477 (print)

regist. j. ilm. teknol. sist. inf. 7 (1) January 2021 31-42

Movie recommender systems using hybrid model based on graphs with co-rated … http://doi.org/10.26594/register.v7i1.2081

The graph constructed from the dataset is stored in a NoSQL database optimized for the graph

data structure. such as Neo4J, FlockDB, AllegroGraph, and GraphDB. A relational-based database is not

used in this research since it does not support graph structure and its related operation like graph

traversal. Graph traversal is conducted by the use of traversal language embedded in the database. For

instance, Neo4J has Cypher. It is also possible to employ a specific graph traversal language that

supports many databases such as Gremlin.

The graph traversal process is started from a movie node as a starting point to other vertices that

are connected to each other. The traversal strategy is a random walk, starting from a start vertex to other

vertices randomly. However, a certain filter is applied so that only vertices that meet specified criteria

are traversed. The traversal is the basis for making a recommendation. Movie vertices traversed with a

certain rating threshold given by a specific User (co-rated), overlapped genre, and overlapped terms are

returned as a recommendation result. In the end, the recommendation result is sorted based on co-rated,

the number of overlapped genres, and the number of overlapped terms. An example of a visualization

of the graph between Movie vertex and User as well as co-rated Movie is shown in Fig. 2. One of the

database management systems that is possible in saving and traversing this kind of graph data structure

is Neo4j.

Neo4j is a database management system, but not a relational one. Neo4j has an advantage in term

of speed than relational database. It is not because it has a very fast algorithm or sophisticated

technology, especially since it’s built upon Java which is slower than in native language like Assembly,

C/C++. The speed that Neo4j has is due to its data structure, using graph-based instead of relational

tables [21]. Naturally, graph is fast in traversing, started from a certain node then visit interconnected

nodes with speed that can be predicted. For example, the case is retrieving books in a library with a

certain genre. In the relational database, all books need to be retrieved first then remove all books that

are not in the predefined genre in the query. However, in graph-based, traversal is started from a book

with the predefined genre, then visit to adjacent book until all books in the same genre cluster are

visited. In this case, the need of retrieving all books in different genres is omitted naturally.

Neo4j offers application programming interface (API) so that Neo4j can be accessed, modified

externally from another program no matter what the programming language is. Neo4j provides REST

API so it can be accessed through HTTP protocol. For querying, Neo4j can be accessed via Cypher, its

own query language, or more universally traversal/query language, Gremlin. Cypher is a declarative

language that let users express what data to retrieve through pattern matching, like SQL statement.

Gremlin, however is an example of imperative language, in which users explain how to traverse the

graph. Cypher ease users to read the code, but applied on Neo4j only. In this study, Cypher is used to

query the nodes.

Fig. 2. Graph visualization for movie recommendation with co-rated

http://doi.org/10.26594/register.v7i1.2081

37
P. P. Adikara et al. ISSN 2502-3357 (online) | ISSN 2503-0477 (print)

regist. j. ilm. teknol. sist. inf. 7 (1) January 2021 31-42

Movie recommender systems using hybrid model based on graphs with co-rated … http://doi.org/10.26594/register.v7i1.2081

Cypher consists of 4 main parts that have specific roles [21]:

• START, to find the starting point in the graph, but it is deprecated in the latest Cypher, and the

recommendation is to use MATCH.

• MATCH, to search for the pattern described in it, allowing to search for subgraph location.

• WHERE, to filter data based on criterions.

• RETURN, to return what to include in the query result set.

Given a case in which require to retrieve the first 10 users who had given rating to two movies

with id=1 and id=2, Cypher syntax is written as follows.
MATCH (m:Movie {movieId:1}), (n:Movie {movieId:2})
MATCH (n)-[:hasRating]-(u:User)-[:hasRating]-(m)
RETURN m, n, u
LIMIT 10

First, from two starting points (movie nodes m, n), graph traversal begins to find users u who

gave rating to movie m, n. This traversal then stops after finished finding 10 nodes and returns nodes

m, n, u accordingly. Fig. 3 illustrates this Cypher query, with the blue nodes are the movie nodes, the

pink nodes are the user nodes, and the edge from user to movie nodes is the rating given by the user to

the corresponding movie. Neo4j has a built-in web application to show the result both in graph

visualization or text-based.

Fig. 3. Returned nodes from pattern matching using Cypher

In order to load the large movie dataset (in this case millions of ratings), instead of creating the

node and relationship one by one manually, Neo4j provides direct load CSV using periodic commit. By

using periodic commit, Neo4j will ensure the failure due to memory constraint will not happen unlike

by using a single Cypher query. Example of the Cypher query to load CSV as follows. Note that the

following example excludes the creation of Genre nodes and the edges to the corresponding Movie

nodes.
USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM 'file:///ratings.csv' AS line
MATCH (m:Movie {movieId: toInteger(line.movieId)})
MERGE (u:User {userId: toInteger(line.userId)})
CREATE (u)-[r:hasRating {rating:toFloat(line.rating)}]->(m)

To speed up the graph traversal in finding the nodes and edges, indices need to be created. This

can be done after or before the nodes are created. In this case, the indices are for User nodes, Movie

nodes, and Genre nodes, using an attribute or a property, movieId, userID, and genre terms respectively.

These indices are constrained to be unique, since no more than one node with the same value (identifier)

is allowed, and to enforce data integrity rule. The following example is a Cypher query to create the

index in User nodes.
CREATE CONSTRAINT ON (u:User) ASSERT u.userId IS UNIQUE

Starting point

http://doi.org/10.26594/register.v7i1.2081

38
P. P. Adikara et al. ISSN 2502-3357 (online) | ISSN 2503-0477 (print)

regist. j. ilm. teknol. sist. inf. 7 (1) January 2021 31-42

Movie recommender systems using hybrid model based on graphs with co-rated … http://doi.org/10.26594/register.v7i1.2081

After required CSV files are loaded into Neo4j database, the next important steps are how the

recommendation is made and how to evaluate the results. The overall process of making the

recommendation is shown in Fig. 4.

First, determine the movie Q that is used as the query. It can be any movie that exists in the graph

database (Movie node). For example, given an auto-complete text box, after a few characters typed into

the text box, it shows a list of movies with partial matches. After a movie is selected, the system will

look for the subtitle. Unless the subtitle is retrieved online simultaneously when the query is made, pre-

processing need not to be done.

Fig. 4. Flowchart of creating the recommendation

Since the subtitles are collected beforehand, the searching of the subtitle is done offline by using

the movieId of the query. The pre-processing of the subtitle can be done after the query is made or when

all the subtitles are collected in the beginning. In this study, the pre-processed subtitles is used when

constructing the corpus since it has the same pre-processing steps. This subtitle will be used in the last

step of making the recommendation.

The next step after selecting a movie query, the pre-defined Cypher query is called to traverse the

graph to get the matching nodes M. This Cypher query is used to test how well it performs using content

or syntactically similarity based on the conversation instead of semantically similarity. Algorithm of the

pattern matching is detailed in Algorithm 2.
Algorithm 2 Pseudo-code of Making a Movie Recommendation

1

2

3

4

5

6

Μ = Find Movie nodes with the highest co-rated by other users with rating given greater than or equal to 3

(in the scale of 0 to 5) with the same genre(s). Sorted by how many users co-rated the movie (countrate) in

descending order.

for M in M do

scorem = calculate score based on countrate(M) and cosine similarity between query q and movie m

Sort movies M by scorem in descending order

M = get top N=10 of the movies

return M

The similarity of two movies are calculated by using cosine similarity of their vector

representations as in Eq. 6. This vector representation �⃗⃗� , �⃗⃗⃗� are derived from the query movie subtitle

and the candidate movie respectively, with one component in the vector for each term. This vector

component is the value of TF-IDF weight.

Start

Query: a movie

Search for closed caption of the query

Pre-process the query’s closed caption

Define Cypher query to traverse the

graph

Stop

Traverse the graph started from query

node to adjacent nodes with predefined

Cypher

Movie recommendation

http://doi.org/10.26594/register.v7i1.2081

39
P. P. Adikara et al. ISSN 2502-3357 (online) | ISSN 2503-0477 (print)

regist. j. ilm. teknol. sist. inf. 7 (1) January 2021 31-42

Movie recommender systems using hybrid model based on graphs with co-rated … http://doi.org/10.26594/register.v7i1.2081

()
cos(,)

1

2 2

1 1

Q M

t
M Q

i iM Q isimilarity
t tM Q

M Qii
i i

• == =

= =

 (6)

where: Q = vector of term’s weight in the query movie, M = vector of term’s weight in the candidate

movie.

The overall score used to sort the movies in the candidate list is simply formulated in Eq. 7.

scorem = countrate(M) × similaritycos(Q,M) (7)

where: countrate(M) = number of users co-rated the movie M with rating >= 3. In Eq. 7, if two movies are

co-rated with the same number of users, it will likely to be adjacently recommended. By utilizing the

cosine similarity, if the content of one movie is more similar than the other one to the query, then the

former movie is likely to be more recommended than the later. Another approach is also possible by

giving weight to the count rate and cosine similarity to give more flexibility. By giving the weight

parameter to each countrate(M) and similaritycos(Q,M), the optimal parameter needs to be calculated, for

instance using gradient descent method.

3. Results and Discussion

For reflecting the result of the system design based on the proposed method, a simple user interface is

built. The user interface used in this research is web-based built using Python and using Django for the

web framework. The user interface is built as simple as possible only to show the bare bones for proof-

of-concept and not for a real-world case even though it is possible to improve the user interface. User is

searching for a movie by typing into a text field and with the help of Javascript, showing a list of movies

by which the user can select one of it. After a movie is selected and clicked on Suggest button, for

example, Toy Story, a recommendation result should be shown as in Fig. 5. This recommendation result

is later to be evaluated how well-performed the recommendation is.

Fig. 5. Example of the recommendation result of Toy Story

Evaluating a recommendation is a difficult measurement since its really subjective and needs a

broad test of subjects. There are so many things that affect this objectivity, such as age, sex, educational

background, previous experience, etc. To simplify the evaluation and as a proof of concept, the result

of the recommendation is evaluated and the accuracy is measured using Precision@K metrics. K used

here is 10, since usually a recommendation is only shown in a small number. This is also usually used

in information retrieval since no more than a few pages are evaluated. This evaluation was tested on a

small subset of users and 4 different queries. Users are ranging from 20-40 years old. Even though it

http://doi.org/10.26594/register.v7i1.2081

40
P. P. Adikara et al. ISSN 2502-3357 (online) | ISSN 2503-0477 (print)

regist. j. ilm. teknol. sist. inf. 7 (1) January 2021 31-42

Movie recommender systems using hybrid model based on graphs with co-rated … http://doi.org/10.26594/register.v7i1.2081

cannot reach the whole broad population subject, a small result comparison is provided between the

recommendation using Rating+Genre and Rating+Genre+Closed Caption. Mean Average Precision

(MAP) is measured to sum up all the Precision@10 results from different tests as depicted in Fig. 6.

Fig. 6. Comparison of the recommendation results between Rating+Genre and Rating+Genre+Closed Caption

Table 1

Precision@10 of two recommendation results

User

Precision@10

Rating+Genre Rating+Genre+Closed Caption

Q1 Q2 Q3 Q4 Average Q1 Q2 Q3 Q4 Average

U1 0.5 1 0.5 0.5 0.62 0.4 0.9 0.6 0.7 0.65

U2 0.9 0.7 1 0.7 0.82 1 0.7 1 0.7 0.85

U3 0.6 0.4 0.6 0.9 0.62 0.6 0.2 0.6 0.9 0.57

U4 0.5 0.5 0.7 0.8 0.62 0.6 0.4 0.8 0.8 0.65

U5 0.6 0.5 0.8 0.5 0.60 0.7 0.5 0.9 0.7 0.70

 MAP = 0.66 MAP = 0.69

Table 1 shows the results from two different recommendation tests. It can be seen that the

combination of three features gives better results even only a small fraction. Recommendation using

Rating+Genre+Closed Caption promotes sequel or prequel movies more than Rating+Genre, since there

are similarities in the content, such as names, places, or other proper nouns. This recommendation result

is good for finding movies with a different title (partially similar or even totally different title) but have

similarities in the content. Sometimes, people do not realize that movie A has a connection to movie B,

unless the same or similar names come up in those movies. This is the reason why MAP of

Rating+Genre+Closed Caption can be better than Rating+Genre, since the users think the recommended

movies are still relevant to them. However, this outcome might not be preferred for people who want

to get more varied movies, rather than just sequel or prequel.

4. Conclusion

From the experimental result, the use of features combination, Rating+Genre+Closed Caption produces

a better MAP score than Rating+Genre, although only slightly better. A movie with similar content to

the query has a higher rank such as sequel or prequel movies. The impact in the real world case

however, still need to be evaluated, because a recommendation is very subjective to personal preference.

A broader range of users such as background and demography variation, need to be considered for

future works. Since this is an initial or preliminary test of this framework, as a proof of concept, many

possibilities can be incorporated to give better accuracy. Overall scoring is one of them, by giving

optimum weight to each score. Feature selection can also be utilized to select which terms are more

important than the others to represent a movie. Further experiments can be interesting to be investigated

by using contextual word representation with a pre-trained word embeddings method such as

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

U1 U2 U3 U4 U5

Rating+Genre Rating+Genre+Closed Caption

http://doi.org/10.26594/register.v7i1.2081

41
P. P. Adikara et al. ISSN 2502-3357 (online) | ISSN 2503-0477 (print)

regist. j. ilm. teknol. sist. inf. 7 (1) January 2021 31-42

Movie recommender systems using hybrid model based on graphs with co-rated … http://doi.org/10.26594/register.v7i1.2081

Word2Vec or GloVe. Not to mention other possible features, like the actors, directors, and so on that

can be used to make a better and more accurate recommendation.

Acknowledgment

This research was supported by DIPA Voucher research grant at Faculty of Computer Science,

Universitas Brawijaya.

References

[1] D. Jannach, M. Zanker, A. Felfernig and G. Friedrich, Recommender Systems: An Introduction,

New York: Cambridge University Press, 2011.

[2] G. Adomavicius and A. Tuzhilin, "Toward the next generation of recommender systems: a survey

of the state-of-the-art and possible extensions," IEEE Transactions on Knowledge and Data

Engineering, vol. 17, no. 6, pp. 734-749, 2005.

[3] S. M. Ali, G. K. Nayak, R. K. Lenka and R. K. Barik, "Movie Recommendation System Using

Genome Tags and Content-Based Filtering," in Advances in Data and Information Sciences,

Singapore, 2018.

[4] N. Mustafa, A. O. Ibrahim, A. Ahmed and A. Abdullah, "Collaborative filtering: Techniques and

applications," in International Conference on Communication, Control, Computing and Electronics

Engineering (ICCCCEE), Khartoum, 2017.

[5] R. Zhang, Q.-d. Liu, Chun-Gui, J.-X. Wei and Huiyi-Ma, "Collaborative Filtering for Recommender

Systems," in Second International Conference on Advanced Cloud and Big Data, Huangshan, 2014.

[6] T. Zhou, L. Chen and J. Shen, "Movie Recommendation System Employing the User-Based CF in

Cloud Computing," in 2017 IEEE International Conference on Computational Science and Engineering

(CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), Guangzhou,

2017.

[7] J. Lu, D. Wu, M. Mao, W. Wang and G. Zhang, "Recommender system application developments:

A survey," Decision Support Systems, vol. 74, pp. 12-32, 2015.

[8] Z. Huang, W. Chung, T.-H. Ong and H. Chen, "A graph-based recommender system for digital

library," in Proceedings of the 2nd ACM/IEEE-CS joint conference on Digital libraries (JCDL '02), New

York, 2002.

[9] K. Lee and K. Lee, "Escaping your comfort zone: A graph-based recommender system for finding

novel recommendations among relevant items," Expert Systems with Applications, vol. 42, no. 10,

pp. 4851-4858, 2015.

[10] S. Wei, X. Zheng, D. Chen and C. Chen, "A hybrid approach for movie recommendation via tags

and ratings," Electronic Commerce Research and Applications, vol. 18, pp. 83-94, 2016.

[11] G. Tüysüzoğlu and Z. Işık, "A Hybrid Movie Recommendation System Using Graph-Based

Approach," International Journal of Computing Academic Research (IJCAR), vol. 7, no. 2, pp. 29-37,

2018.

[12] M. Shah, D. Parikh and B. Deshpande, "Movie Recommendation System Employing Latent Graph

Features in Extremely Randomized Trees," in Proceedings of the Second International Conference on

Information and Communication Technology for Competitive Strategies (ICTCS '16), New York, 2016.

[13] Y. Deldjoo, M. Elahi, M. Quadrana and P. Cremonesi, "Using visual features based on MPEG-7

and deep learning for movie recommendation," Int J Multimed Info Retr, vol. 7, p. 207–219, 2018.

[14] J. K. Leung, I. Griva and W. G. Kennedy, "Making Use of Affective Features from Media Content

Metadata for Better Movie Recommendation Making," arXiv, 2020.

[15] S. Reddy, S. Nalluri, S. Kunisetti, S. Ashok and B. Venkatesh, "Content-Based Movie

Recommendation System Using Genre Correlation," in Smart Intelligent Computing and

Applications, Singapore, 2019.

[16] H. Li, J. Cui, B. Shen and J. Ma, "An intelligent movie recommendation system through group-

level sentiment analysis in microblogs," Neurocomputing, vol. 210, pp. 164-173, 2016.

http://doi.org/10.26594/register.v7i1.2081

42
P. P. Adikara et al. ISSN 2502-3357 (online) | ISSN 2503-0477 (print)

regist. j. ilm. teknol. sist. inf. 7 (1) January 2021 31-42

Movie recommender systems using hybrid model based on graphs with co-rated … http://doi.org/10.26594/register.v7i1.2081

[17] O.-J. Lee and J. J. Jung, "Explainable Movie Recommendation Systems by using Story-based

Similarity," in Explainable Smart Systems 2018 (ExSS ’18), Tokyo, 2018.

[18] J. Li, W. Xu, W. Wan and J. Sun, "Movie recommendation based on bridging movie feature and

user interest," Journal of Computational Science, vol. 26, pp. 128-134, 2018.

[19] W. E. Winkler, "String Comparator Metrics and Enhanced Decision Rules in the Fellegi-Sunter

Model of Record Linkage," The Educational Resources Information Center (ERIC), Washington,

DC, 1990.

[20] C. D. Manning, P. Raghavan and H. Schütze, An Introduction to Information Retrieval,

Cambridge: Cambridge University Press, 2008.

[21] A. Vukotic, N. Watt, T. Abedrabbo, D. Fox and J. Partner, Neo4j in Action, Greenwich, CT, United

States: Manning Publications Co, 2014.

http://doi.org/10.26594/register.v7i1.2081

